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1. Introduction. It is well known that alternating direction implicit methods 
(ADI methods) often provide very powerful techniques for computing numerical 
solutions to partial differential equations of elliptic type. The theoretical explana- 
tion for this is incomplete. The theory is in fact so unsatisfactory that it is often 
not possible to predict whether a suggested ADI-scheme is likely to converge or not. 

Consider the following Dirichlet problem 

(1 1) art (al~z)ax ) au (aax), (x) + c(x)u =f(x), x E R; 
u(x) = g(x), x on the boundary of R, 

where x = (xl, x2) and R is the interior of a compact region. The coefficients a,, a2 
and c are real valued sufficiently smooth functions. a, and a2 are strictly positive and 
c is bounded from below by a sufficiently large lower bound co . Let us introduce a 
rectangular lattice of mesh points on the region. We approximate the boundary 
of the region by nearby mesh points at which the solution is approximately known. 
If we set up the standard five point difference approximation to ( 1.1 ) on this lattice, 
we get a system of linear equations with as many equations as unknowns. It can 
be shown that this system has a unique solution if co is sufficiently large. It is well 
known that if the number of unknowns is very large it is often best to solve such a 
system with some iterative method. In this paper we will consider an ADI-method 
which for the case a, = a2 = 1 and c = 0 is identical with the original ADI-method 
of Peaceman and Rachford [3]. It is known both from existing theory and numerical 
experiments that this ADI-method, using a sequence of different iteration param- 
eters, is often superior to other iterative methods. Cf. Birkhoff, Varga and Young 
[2]. In practice one usually chooses the parameters in a cyclic way. In this paper we 
will always suppose that this is done and we will call the number of parameters 
m the cycle length. How to make the best choice for this number of steps, m, will 
not be discussed in this paper. 

Before we describe our new result we will give a short survey of certain aspects. 
of the theory for ADI-methods. For details we refer to Birkhoff, Varga and Young 
[2], Varga [5] and Wachspress [6]. 

Let us thus first consider Laplace's equation with Dirichlet data given on the 
boundary of a unit square. Suppose we use a uniform lattice of mesh points with 
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mesh size A. It is then possible, for any given m, to construct a set of iteration 
parameters for which the discrete L2-norm of the error function is reduced by at 
least a factor 

(1.2) PM 1 (tan (7rh/2))1m 
2 

for each full cycle of iterations. For the same problem the spectral radius of the 
point successive over relaxation operator is equal to pi. The number of arithmetic 
operations used to complete a step in the ADI-scheme is of the same order as for 
the successive over relaxation method. These facts explain why ADI-methods can 
be much more efficient than other iterative methods when h is small and m ? 2. 
It has been shown that essentially the same rapid convergence is achieved in more 
general cases provided certain operators commute. Birkhoff and Varga [1] have 
however shown that these commutativity conditions impose very strong restric- 
tions on both the coefficients and the region, which must then be rectangular. 

Very little is known for noncommutative cases except when m = 1. In this one- 
parameter case there exists a simple convergence proof which at the same time 
gives an adequate estimate for the asymptotic rate of convergence. However, as we 
have seen earlier, m = 1 is the least interesting case. Some weak results have also 
been proved for the multi-parameter case. Thus Pearcy [4] has shown that we can 
always get convergence for any given problem and any given mesh if we choose m 
sufficiently large, have a mild restriction on the size of the iteration parameters and 
use them in a certain order. Pearcy's technique is however not refined enough to 
give more than a very weak estimate for the rate of convergence. But it is known 
from numerical experiments that the same rapid convergence as in commutative 
cases is possible even in noncommutative cases. 

In this paper we will consider equations of type (1.1) in rectangular regions. 
Our operators will then in general not commute. For any given m we will construct 
iteration parameters which will make our scheme converge rapidly if the mesh 
size is sufficiently small. We will also be able to show that our estimate for the 
spectral radius of the operator which corresponds to a full cycle of iterations differs 
from that in a comparable commutative case only by a lower order term. Our 
technique would enable us to exhibit an estimate for this difference in terms of the 
mesh size, the iteration parameters, the coefficients and certain of their derivatives. 
Our iteration parameters will in general depend on the space variables. This de- 
pendence is however quite simple and it therefore adds little to the programming 
effort. Furthermore, a numerical experiment indicates that our theorems are not 
true if we restrict our choice to parameters which do not vary with the space 
variables. The result of this and other numerical experiments will be reported in a 
separate paper. 

2. Preliminaries and Statement of Results. To simplify the writing up of our 
proofs we will suppose that our region is a unit square and that our lattice of mesh 
points is uniform, i.e. Ax, = Ax2 = h. The extension of our results to rectangular 
regions and rectangular lattices is immediate. We suppose that h = 1/N for some 
integer N and that h < ho where ho is a given constant. The interior of the lattice 
is defined by the Cartesian product 
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R(h) = Ri(h) X R2(h), 

where 

Ri(h) = {xtlxi=h,2h, **,1-h}. 

The boundary of the lattice is defined by 

OR(h) = aR,(h) X R2(h) U Ri(h) X 0R2(h), 

where 

aRi(h) = {xi i xi = 0, 1}. 

Our difference approximation to (1.1) is the standard five point approximation. 

-D-1x(ai(x + (h/2)ei)D+xlu(x)) 

(2.1) -Dx2(a2(x + (h/2)e2)D+x2u(x)) + c(x)u(x) = f(x), x E R(h), 

u(x) = (x), x C M (h), 

where ei is the unit vector in the direction of the positive ith coordinate axis and 

hD+xiu(x) = +(u(x ? hei) - u(x)). 

Introduce the operators Qi defined by 

Qiu(x) = -D-x(ai(x + (h/2)ei)D+xiu(x)) + ci(x)u(x), x E R(h) 

=0, x E OR(h), 

where ci(x) and c2(x) are real valued sufficiently smooth functions which fulfill 
c1(x) + c2(x) = c(x). If we consider u(x) to be a vector with a component cor- 
responding to each point of R(h), we see easily that the centered difference struc- 
ture implies that the operators Qi , i = 1, 2, correspond to symmetric matrices and 
that they thus only have real eigenvalues. We will always assume that these eigen- 
values are bounded from below by a strictly positive constant for all h < ho. 
We will refer to this condition as the eigenvalue condition. 

We will discuss the eigenvalues of Qi , i = 1, 2, in Section 3 and give a sufficient 
condition in terms of the coefficients of Qi to ensure that the eigenvalue condition is 
fulfilled. In the same section we will also show that (2.1) has a unique solution and 
that the operators on the left-hand sides of our ADI-scheme 

(p.(x, h) + h2Qi) U+i12 - (pn(x, h) - h2Q2)U. + h2f, x E R(h) 
(p.(x, h) + h2Q2) U+1 = (pn(x, h) - h2Qi)U,+i12 + h2f, 

U1 (X) = ... = U.+1/2 (X) = U.+1 (X) = 9 (X), x E aR (h) ' 

n = 1, 2, ... , Ui(x) given, 

have well defined inverses if pn(x, h) > 0. Here ul(x) is the initial approximation 
to the solution of (2.1) and pn (x, h) are the iteration parameters. We will assume 
that these parameters satisfy 

pl(x, h) > p2(x, h) > ... > pm(x, h), 
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and 

pnl(x, h) = p,(x, h) if ni = n mod (m). 

We will also assume that the parameters pn(x, h) can be written as a product of a 
fixed function of x and a function which depends on h and n. To simplify the nota- 
tions later, we let pn(x, h) have the form 

(2.3) pn(x, h) = b'(x)h'(kn(h))-1 

where kn(h) > 0 and b(x) is a sufficiently smooth, strictly positive function. 
Now suppose that ui, U2, * * * converge to a limit. This limit must then be equal 

to the solution of (2.1). This fact enables us to reduce our problem to the study of 
the convergence to zero of the solution of the following error equation, 

(Pn(X( h) + h2Qi)E6+12 (P_(x, h) h2Q2)'En (2.4) nX 1J7+/- nn - ff2ne =1,2***e 

(p>, (x, h) + h 2Q2)En+l = (pn(x, h) -h Ql)Cn+l/2 e 

with 

Ev = u - U, 

where u is the solution of (2. 1). 
In the following we shall work almost exclusively with mesh functions which 

are zero for x C ORI(h). We therefore introduce the space 

Uo = ju I u(x) = 0, x E 9R(h)}, 

with an inner product and a norm defined by 

(U, V) = E ha2(X)V(X), 11 U 112 = (U, u). 
xER(h) 

By Q(A) we denote the spectral radius of the operator A. It is well known that 

(2.5) Q(A) ? fl A 11. 

For p > q we will write HI A, 
for A 

Ap-1 ... 
Aq . We also define ll1" A, 

= I 
the identity operator. 

Consider (2.4). To decide the convergence of our method we want to estimate 

?m = Q (P, + h2Q2)-(p, - h2Q1)(p' + h2Q<)-1(p' - h2Q.)}. 

Using (2.3) we see that 

2 
2 

p - h2Q = k -V(h) b(x)(1 - kQi')b(x) and 
(2.6) v 

(p + h 2Q)-l = k.(h) (b(X))1-(1 + kQi '>(b(x)) 1 

where 

Qi= (b(x))>Q (b(x)<', i = 1, 2. 
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(2.6) tells us that 

Qm = Q (b(x)) 1 (t (1 + kvQ2'K1(1 - kvQ' )(1 + k^Q )1 

X (1- kQ2') )b(x)}. 

By a similarity transformation we get 

(2.7) Qm = 
Q H (1 + kQ2')Y1(1 - kvQ,')(1 + kvQl')-'(1 - kvQ2') 

The spectral radius Qm will eventually be estimated by using (2.5). Before this is 
done we will however carry out still another similarity transformation. Thus let us 
introduce 

= (1 + kmQ2' )(1 + kvQ2')1(1 - k^Ql')(1 + kvQi')1 

X (1 - kQ2')(1 + kmQ2')7. 

It is easily seen that 

(2.8) QM = Q fSv _:l Sv 

We will write 1lm Sv as the sum of two terms, 

(2.9) HS=H Tll Tv2 + R 

where 

Ti= (1 + kvQi)'1(l - kvQi') 

and the remainder R is defined by (2.9). In commutative cases R = 0. From (2.S) 

and (2.9) we obtain, 

1 1 (2.10) Qm < |i Tv| *t Tv2| + 11 R . 

We will show in Section 4 how to choose the kv to make the first of these terms small 

and in Sections 5 and 6 how to choose b(x) to make fl R fl very small. The first 

term in (2.10) can be treated just as if our problem were commutative. 

As will be shown in Section 3, Qi' as well as Qi are selfadjoint operators and they 

therefore only have real eigenvalues. The bounds which we can get for Tl fl " t, 1 

depend on lower and upper bounds for these eigenvalues. Suppose that we know 

that the eigenvalues of Qi', i = 1, 2, lie between a and : where 0 < a < ,3. We are 

then able to state our main result. 

THEOREM 1. If b 2(x) = a (x) and we choose k, conveniently we have 

(1_ (/3)1/2m 2 

(2.11) <rn _ 1 (a/A) 
/ 

+ 0 (h312m). 

We give estimates for a and d in Section 3. There we will also show that 

(2.12) a/: = 0(h2) 
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if the eigenvalue condition is fulfilled. From (2.11) and (2.12) follows 

< (1 - q(h))2 +?(h3/2m 

where 0 < q(h) = O(hl/m). Compare (1.2). 
The case a, = a2 is of course of particular interest in many applications. In 

that case we can prove a somewhat stronger theorem. 
THEOREM 2. Suppose that al(x) = a2(x). Then if b2(x) = al(x) and k, are 

chosen conveniently we have 

H bEm+i fl ? -(a/) + b(h312m b i 
+ (a/#)1/2m) 

Remark. If we consider equations of type (1.1) for which the coefficients can 
be extended to be periodic (of period 2 in xi and x2), even, sufficiently smooth 
functions for all values of x it can be shown that we do not necessarily need to 
choose b2(x) = ai(x) to achieve rapid convergence. In fact it suffices to make 
max a/ax2(al/b2) ] sufficiently small. The proof of this result is quite involved and 
we do not give it in this paper. Numerical experiments indicate that an upper bound 
for I/ax2(al/b2) 1is needed to guarantee convergence for small values of m. 

3. The Eigenvalues of Qj and Qj'. We begin this section by proving 
PROPOSITION 3.1. Qj and Qj', i = 1, 2, are selfadjoint operators, i.e. 

(Qiu, v) = (u, Qiv), (Qi U, v) = (u, Qi'v), 

for all u, v E Uo. Qj and Qi' thus have only real eigenvalues. 
Proof. That (Qju, v) = (u, Qjv) follows immediately from the definitions of 

the inner product and Qj, the fact that u, v E U0 and a summation by parts. The 
fact that (Q.'u, v) = (Qib-1u, b-1v) and (u, Qi'v) = (b-'u, Qib-lv) = (Qib-'u, b-'v) 
proves the second statement of the theorem. 

We next give an estimate of the eigenvalues of Q . 
PROPOSITION 3.2. Suppose that X is an eigenvalue of Qi for a fixed value of xi E Rj, 

j X i. Then 

min ai(x)4 sin2 (7rh/2)/h2 + min ci(x) ? X 
o~xi?<1 0?zi?<1 

< max ai(x)4 cos2 (irh/2)/h2 + max ci(x). 
O!xs<1 O<Xi <1 

Before we give a proof we state a corollary to Proposition 3.2. 
COROLLARY. The eigenvalue condition is fulfilled if 

ci (x) > -min ai (x)4 sin2 (irho/2)/h02, i = 1, 2. 

In this inequality the min are taken for all values of x in the closed unit square. 
Proof of the proposition. We will use the following notation 

(U, V)i:r,s = Z hi(x)v(x), 
rh <x<sh 

|| u |It r. = (u, u)i:r,s X 
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where 0 < r < s ? N and u and v are mesh functions defined on R.(h) U aRi(h). 
Let O(xi) E Uo be an eigenfunction of Qi for which 11 i:,N-1 = 1 and 

Qib = X, xi E Rj fixed, j X i. 

Then 

X = (xN, 4)i:1,N-1 = (-D-xiai(x + (h/2)ei)D+xi4, O)i:l,N-1 + (Cir4, O)i:l,N-1 

Writing out the sums it is easy to see that 

(-D-xiai(x + (h/2)ei)D+xiO, 4))i:l,N-1 = (ai(x + (h/2)ei)D+x-7, D+xij))i:ON-. 

Thus 

min aijl D+xio 11i :0,N-1 + min ci < X ? max aill D+xio 1i:0N-i + max ci . 
O _i2i ?<xi<1 0 <xi <1 o?<Xi_ 

To finish our proof, we show that 

(3.1) 4 sin2(rh/2)/h2 < 11 D+xi. 2 - 4 cos2 (wh/2)/h2. 

To do this we develop O(xi) in a discrete Fourier series 
N-1 

4 (xi) = Ea,, sin 7rx v. 
v=l 

It is easy to show that (sin 7rxv, sin wXiA)ilN-1 = 216vi if 1 _ v, t _ N- 1. We 
know that 

N-1 

11 1t:1,N-1 = 2 j av 2 - 

Furthermore 

11 D+xOI I4 i:0,N-1 = -(4 D-xiD+xi4))i:1,N-1 
N-1 

- 1 Z 4 sin2 (rvh/2)/h221 av 2 

which proves (3.1). 
The eigenvalues of Qi' can be estimated in terms of the eigenvalues of Qi. 

PROPOSITION 3.3. Suppose that for a given xj, j 7 i, the eigenvalues of Qi fulfill 

0 < a (xi) < X < 13(xi). 

Then the eigenvalues X' of Qi' satisfy 

0 < a (xi)/ max b2(x) ? X' < fl(xi)/ min b2(x). 
?-<Xi<1 ?-<Xi <1 

Proof. Let 

Qi'4) = X'4 

where 14 0 ||i:1N-1 = 1. Since Qi is a selfadjoint operator a(xj)II T 2i1N-i = 

(Qj', t')i:lN-l < :(Xj)l t' |i:1,N-1 , for all T E UO . By the definition of Q/ we get 

X = (X'4, 4))i:1,N-1 = (Qi'), 4)i:l,N-1 

= (Qi(b)-14, (bY14))i lN-i 
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Thus 

(a(Xj)/ max b2) -< a (Xj) II b-lf102 Ii1,N-1 

< (Qib-'07 b-lq0)i1,N-1 < :(xi) IIb-10 112i:1,N1 

<= (~xi)I min b2(x)), 
o _ xi _ 1 

which completes the proof. 
We may use Propositions 3.2 and 3.3 to estimate the quantities a and 3 which 

were introduced in Section 2. These propositions also tell us that if the eigenvalue 
condition is fulfilled we always have a/: = 0(h2). It should however be pointed 
out that the values of a and f3 which can be computed from Propositions 3.2 and 3.3 
often are rather pessimistic and that it is sometimes advisable to try to get better 
bounds by some other method since the error estimates are then improved. It is 
also known from experience that the efficiency of the ADI-scheme depends very 
much on the choice of a and d. 

We next show some simple consequences of the eigenvalue condition. 
PROPOSITION 3.4. Equation (2.1) has a unique solution. 
Proof. (2.1) corresponds to a system of linear equations with as many equations 

as unknowns. We therefore only have to show that u 0 is the only solution to 
(2.1 ) for f(x) = g(x) 0. Suppose that v(x) E 0 and 

(Q1 + Q2)v - 0. 

This is not possible, since the Qi are selfadjoint operators with strictly positive 
eigenvalues. That is, there is a c > 0 such that 

((Q1 + Q2)v, v) : ci v fl2 
for all v E Uo . 

This contradiction establishes the proposition. 
PROPOSITION 3.5. 

(p.(x, h) + h2Qi)u(xi) = f(xi), Xi E Ri(h), 

u(0) = u0, u(1) =U 

has a unique solution. 
Proof. Observe that by (2.6) 

h2Qi = h_ pn(x, h) + h ~ - b(x)(1 + kn Q')b(x). 
lkn(h) 

By Proposition 3.3 the eigenvalues of Qi' are positive, hence this operator has a 
unique inverse. 

Proposition 3.5 shows that u3/2, u2, , defined by (2.2) are all well defined. 
The following lemmas will be used later. 
LEMMA 3.1. For any k > 0 

ll(1 + kQi')-l -l < 1 1+ ka <1 

11(1 + kQi')-'kQi' 11 1, = 
+ + k< 

1(1 + lkQi'f'(1 - kQi')l ?1 maxQ 
1 - a o- 1) < 1 
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Proof. Q.' are selfadjoint operators and they therefore have complete sets of 
orthonormal eigenfunctions. Develop u E Uo in series of eigenfunctions of Qi'. 

N-1 

U = a, a((xj)O>(xi), j $ i, (4j , 4;&)i:1,N-1 = 6pv& 

Now 
N-1 ap(xj) 

(1 + kQi' 1u = E 1__(_i) 

j'=i 1 + kX, (xj) 

where X,(xj) is the eigenvalue corresponding to 4, (xi). Thus 
N-1 

1 (1 + kQj')-1u 1l2 = Z 11 ap/(l + kXp) flj:1,N-1 
v=l1 

( (-1 +k )~ E | | |a| j :1,N-1 = ( k) 112 

The other inequalities follow in the same way. 
LEMMA 3.2. 

HT~j ? max fi I Ts it m~a?x? tI1 + keX 

Proof. Cf. the proof of Lemma 3.1. 

4. The Choice of k,. It is obvious from Lemma 3.2 why we are interested in 
making 

m I - kX 
max HI 

a?<X?o 1 1 + k~X 

small. This problem has been extensively treated in the literature and hence we 
will give it only a brief treatment. We refer the reader to [2], [5] or [6] for details. 

The optimal as well as several other good choices of k, are known. The perhaps 
simplest choice is 

k = 
: 

l(1)(2P-1)/2m 
kP-~- = v P= 1) 2,* ,my 

which corresponds to the parameters suggested in the original paper by Peaceman 
and Rachford [3]. 

With this choice we get 
? axm 1 - kX <1 -(a /I)1I2m 

aX 
T 1 + kX = 1 + (a/1)1/2m 

(4.1) 
_1-q(h) =1 + q(h) where 0 < q(h) = O(hl/m). 

The last equality follows from the fact that a/13 = 0(h2). Using the results of 
Section 3 we see that 

(4.2) kp = O(h(2(mm-)+l)m), v = 1, 2, * m. 
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It is easy to show that (4.1) and (4.2) are true also for the optimal parameters 
due to Jordan. Cf. Wachspress [6]. In the proof of our theorems we will suppose that 
the kl are chosen so that (4.1) and (4.2) hold. But we could by our technique prove 
convergence when h -* 0 for all sets of k, for which 

m 
1 x2 1 (aA2 

max H 1- < (1+c 
a?X<iO1 + hA \ (a,) 

where 0 < c(a, A) < 1, 

h(km)"12/c(a, 3) -* 0 when h -+ 0, 

andfor v= 1,2,.. 1 

(k,)"12/c(a, 1) -* 0 when h -+ 0. 

5. A Fundamental Inequality. In this section we will derive an inequality for 
the operators 

K, = krk,( 1 + kQl )-l(Q1'Q2' - Q2'Q1') (1 + kmQ2')-' 

which will play an important part in the proofs of our theorems. 
LEMMA 5.1. 

KV, fl < 2(k_)112 max b(x) a2(X) a (a,(x)/b2(x)) 
O<_x1,X2?_1 a, (X) OX2 

X 4 min a2 1+ km min (b C2))) 
Ox1,x2?_1 0_Xl,X2<1 

+ 2(k,)112 max b(x) ai(x) 
a 

(a(x)/b 2(x)) 
o _x1,x2?< 1 a2(x) ax1 

X (4 min a,(1 + kv min (b2 2)) 
Ox1,x2 ? 1 0_x1,x21 /1 

+ km max 1-* 
a 

(a,(x)lb2(X)) 
O_ lx2_ a,(x) OX2 aX2 

+ k_ max a*(a) (x) 
a 

(a2(x)/b2(x))) 
+ XlX2_1 a2(x) a(Xa ax/ 

+ O(h(k,) 12 + h(km)"12 + (k )1/2 km + (km )12k ). 

The following corollary follows immediately from the lemma. 
COROLLARY. If b2 = a1 we have 

K l = O( (k)"2 + h(km)/2 

If furthermore al = a2 we have 

1 K =m O(h(kl)1/2 + h(km)1/2 + k(km)"12 + k(kl) 1"2) 

Proof of the lemma. We first consider the operator Q1'Q2' - Q2'Q1' which maps 
Uo into Uo . For x E R (h) this operator is defined as the commutator of two second 
order difference operators and it can therefore be expressed as a third order differ- 
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ence operator. Using discrete counterparts of Leibnitz's rule we may write 

(Q1 Q' - IQ I)u 

Qi (A+ (x, h)Dx2b 1+ A- (x, h)D 2b- + A20(x, h))u 

+ (b-1D?xA+t(x, h) + b-1DxLA- (x, h) + A02(x, h))Q2'u 

(5.1) + b-D+xAA+l+(x, h)D?z21lu + b-DxLAjll+(x, h)D+ 2b-lu 
+ b'lD?1AlI(x, h)D ,b-lu + b DLxLAVll(x, h)D_$ b- lu 

+ b-D+xA+o(x, h)u + b-'D-xA7o(x, h)u + A+t(x, h)Dx2b-lu 

+ Ao (x, h)D2b-lu + Aoo(x, h)u, 

for x E R1(h) and u E U0 . Formulas for the coefficients A+ (x, h) etc. can be given 
in terms of a,, a2 , b, c, and c2 and certain of their divided differences. Because of our 
assumptions on the smoothness of a,, etc. we see that all the coefficients in (5.1) are 
uniformly bounded functions of x and h. It can be shown that 

21 ~xh) = b (x) a2(x) * a (a, (x)lb 2(X)) + O(h), A+ (x, h) = (xah(x) a+ h 

Alj1(x, h) = -b(x) .l - (a1(x)/bt(x)) + 0(h), Ai (x, h) = A+ (x, h) + 0(h), 

A+ (x, h) = -a b(x) (a2()/ba (x)) + 0(h), 12 
~~a2 (X) &9X1 

A- (x, h) = A+ (x, h) + 0 (h), 

A20(x h) = - 1 ) a2(x) -(ai(x)/bt(x)) + 0(h), 
a1(x) aX2 \ aX2 

=ox -h1 a 11(() a a2 (X)/o2X))I + 0 (h). 
a2 (x) ax, a9xl 

We can extend the formula (5.1) to be valid even for x E aii(h) if we replace 
D?., by Dixi in (5.1), where 

ixiu = D?xiu, x E R(h), 

- 0, x a9 d(h). 

The D?xi are thus mappings of U0 into Uo . We extend our coefficients, when needed, 
by defining them to be zero for x E MR(h). Our formula (5.1) will then not only 
give a correct representation for (Q'Q2?' - Q2'Q1')u in the interior of our mesh but 
will also give a representation of Q1'Q2' - Q2'Q1' as the sum of operators which 
have the form 

TjA(x, h)T2 

where the Ti, i = 1, 2, map Uo into Uo, Ti only operates in the xi-direction and 
A (x, h) is a uniformly bounded function. Now 

kvkM,(1 + kQ'[)-1T1A(x, h)T2(1 + kmQ2')-l 11 

< max 1 A(x, h) ll(1 + k^Q1Y)'k^Tj 11 1 kXT2(1 + kmQ2')<' 
0 <?X1X2 < l;h <ho 
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To finish the proof of Lemma 5.1 we only have to use Lemma 3.1 and the following 
lemma on the different terms of K, . 

LEMMA 5.2. For k > 0 

152 (I + kQ'k)-lkb-l7D? [1 = II 
kDfTib-1(l + kQi')1 

II 

(5.2) < kl'2(4 min ar 1 + k minl b C 
\ 0<xIx2?1 0? ?0 <-X1,X2?-! 

Proof of Lemma 5.2. It is easy to see that - Dxi is the adjoint operator of D+?. 
Using Proposition 3.1 and the fact that adjoint operators have the same norm we 
are able to prove the equality in the lemma. Next define 

v-- (1 + kQi')-lkl"2b-1D-xiu, u E Uo 

so that 

(1 + kQi')v = k112b-lDxu. 

Form the scalar products of both sides with v 

(v, (1 + kQi')v) i:l,N-1 = ( V, k112b1D-Dxu)i iN-i 

Observe that v E U0. Hence from considerations very similar to those in Sectioni 3 

(V, (l + kQi')v)i:l,N-1 V 2| i:1,N-1 

-k(v, b-'D-xiai(x + (h/2)ei)D+ib lv)i1l,N-1 

+ k(v, b2CiV)i:1,N-1 

= I V fli:l,N-i + k(D+xib- v ai(x + (h/2)ei)D+zxb-lv)i:O,N-1 

+ k(v, b-2CiV) i:l,N-1 

> (1 + k min (b 2ci))11 V l2:iN-i 
0 _<X1.X2 <- 1 

+ min aik 11 D+xib-lv 1:O,N-1. 
0 ?Z X1,X 2 

Next we show that 

(v, k1/2 b'D1xj)i:1,N-1 = (v, k1/2b-1D-xju) i:,N = -k"2(D+ib-lvI U)i:ON-1 

? k1/2 11 D+xjb 1v 1li:O,N-1 || U fli:O,N-1 

? k(C/2)11 D+xibjlv 12:0,N-i + (1/2C)fl U ji:i,N-l 

for all C> 0. If we choose C = 2 mino?x,,X2?i ai we get 

fl (1 + kQ' ) k _"2b'D u l, - 

_ 4 min ar. 1 + k min (b 2C)O f1 1l U i|21,N-l 
0 <-XI.X2 -1 L <X1,X2 <1 

If we sum this inequality over Rj, I j i, we get one of the inequalities in (5.2). The 
case with ?+xi instead of D--x can be treated in a quite similar way. 

6. Proofs of the Theorems. We will now estimate the norm of the remainder R 
which was defined by (2.9). 
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LEMMA 6.1. 
m-1 m-1 

(6.1) R 11 -< 1 (1 + 11 RV ) -1 + ZflR '1l 

where 

(6.2) 11 RV 11 < 2{1 KIv 17/(1 - 11 K,, 11) + 11 Krm 17/(1 - 11 Kvm 11) 

and 

(6.3) 1f Rv 11 < 4 Kv+l 17/(1 - 11 K,,+1 11). 

Combining this lemma with (4.1) and Lemma 5.1 it is easy to finish the proof 
of Theorem 1. 

Proof of the lemma. The remainder R was defined by 

R = H S.- H TV, TO 

where 

Sv = (1 + kmQ2')(1 + kvQ2')-'(1 - kvQ') (1 + kvQ,')-(1 - kvQ2')(1 +krQ2')- 

and 

T> = (1 + kQi')-'(l - kQ'). 

R can be written as 

(6.4) R = (fSp - TlTv2) + (Tv Tv1Tv2 - T, Tv2) 

Introduce 

=V Sp - v~v 

Observe that Rr, = 0. Obviously for m = 2 
2 2 

S,- Tvj Tv2 = T21T22R1 , 
1 1 

whence by Lemma 3.1 
2 2 

tSvsyI TyjTv2 jt< || R, 1 

For m= 3 
3 3 

USv - H v T1Tv2 = T31T32(T21T22R1 + R2T11T12 + R2-R1) 

whence 

1 1 
2 

1 
R 
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In exactly the same way we can show that 
m m m-1 

(6.5) , S-H TT,2 < rJ(1 + 1 R 

Next consider the second term in (6.4). We easily get 
2 2 2 

(6.6) II T 2- TV rf T,2 = T21(T22T1 - TlT22)T12. 
1 1 1 

In the same way 
3 3 3 

rr T ,1T^2 - TV1 H T,2 
1 1 1 

2 2 2 \2 2 2 

= T31T32 (H T1T,2 - VH 1T 1 H T2 T31 (T3211 T1 T - 11 Tv1 T32 II 72 - 

By (6.6) 
3 3 3 

.I T1Tv2- JJ Tv1HJ Tv2 T31T32T21(T22T1j - TlT22) T12 
1 1 1 

2 2 

+ T31(T32T21- T21T32) Ti1 Tv2 + T31T21(T32Tl- T11T32) Tv2 
11 

Proceeding in this fashion we can show that 

m m 
m m-1 

(6.7) H1 T1T,,2 - TV, H T,2 = > R,' 1 1 1 N-1 

where 

R' TV, l vm 2 T +1,1 _ l_1 'L+1,2Tl - TyiTM+1,2) 1 Tl l2f P =;+2 z- 6z1p=l v-l 

To prove (6.1), we use (6.4), (6.5) and (6.7). 
We now prove (6.2). It can be shown by elementary calculations that 

RV = -2 (1 - (kv/km) ) 

(6.8) X {(1 + kQ1')-'(1 + kQ2')-l- (1 + kvQ2')-1(1 + kQl')-l' 

+ 2 (km/kv) ( 1 - (kv/km )2){(1 + kvQ,')-1(1 + kQ2')-' 

- (1 + kvQ2')-1(1 + kvQ1 )''I(l + kmQ2')'. 

We now show how to estimate the norm of the first term in terms of the norm of 
KV. Define P. and P,. by 

P, (1 + kQi')-'(l + kQ2') - (1 + kvQ2')<(1 + kQli')' 

(6.9) = (1 - kQ2'')-{ (1 + kQ1')'lk 2(Ql'Q2' - Q2'Q1') 

(1 + kQ1')-'(1 + kvQ2')-1' (1 + kvQ2')'P,. 
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But 

P,= (1 + kvQl1)lk 2(Q1'Q2' - Q2'Q1') (1 + kQl')-1(1 + kvQ2')-' 

= (1 + kQl')-lk 2(Q1'Q2' - Q2'Ql') (1 + kQ2')-1(1 + k Q1')-l 

+ (1 + kQi'X) k2(Q1'Q2' - Q2'Ql'){(1 + kQi')-'(l + kvQ2')-' 

- (1 + kQ2') (1 + kQli)7} 
= K, -(1 + k^Q,')- + KIPvP 

where we used (6.9) to obtain the last identity. Thus by using Lemma 3.1 

|| Pv 11 < 11 Pvv~~~~~~~~~~~~~~~~~~~~~I 11 -< 11 K, 1 + 11 Kv1X1Pv1 

Hence 

)PI | Pf || < 11 Kl |I/(1- |KI 11.) 

The estimation of the norm of the second term in (6.8) requires some special care- 
We use P,' and PIm defined by 

Pp = (km/k,){(1 + kQ )' (1 + kvQ2') 

- (1 + kvQ2')1(1 + kQl)' l }(I + kmQ2')- 

= (1 + kvQ2')-1{(1 + kQi'Y)lkvlCm(Ql'Q2' - Q2'Q1')(1 + kvQ1'>' 

X (1 + kmQ2')-}('1 + kvQ2')'- 

= (1 + kQ2')-7-Ppm(l + kQ2' )'. 

Ppm can now be treated as PI, above. We get 

|| Pv || <- | Pvm fl -< | KIM ||/(1 - | KIm1) 

To finish our proof of (6.2) we use the definition of R, and remember that 

kl < km, V = 1,2 ,m-1. 

The proof of (6.3) is quite similar. Using the definition of R,t' and Lemma 3.1 
we get 

III f< - T - T,,+1,2-T,+1,2Tyj 

We can treat these terms almost exactly as we did the terms in R, after having 
observed that 

TXry l ,+1 ,2 -T, +1 ,2T1 71 

= 4{ (1 + kQ,')-f'(1 + k1,+iQ2')-l - (1 + k;, +Q2')-(1 + kyQ,')-lI}. 

This finishes the proof of Lemma 6.1 and thus also the proof of Theorem 1. 
We now indicate how to modify the proof above to get a proof of Theorem 2. 

Our first modification consists in not carrying out the last similarity transformation 
in Section 2. We instead define our remainder as 

m m m 
R?' = 17J (1 + kyQ2'7'l(1 - kQ1')(1 + kvQ1'7'l(1 - kvQ2') - 17 Tw1 117 Tv2. 

1 1 1 
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By carrying out an analysis of this remainder analogous to that of R in the proof 
of Theorem 1, we can prove a lemma corresponding to Lemma 6.1. The main differ- 
ence in these two lemmas is that the estimate of 11 R' 11 will contain terms propor- 
tional to 1i Kmm j.. However as the corollary to Lemma 5.1 shows us this is not 
dangerous if a, = a2 . 

To finish our proof we only have to note that 

bEm, =b T ( + h2Q27 -(p + h2Qi)(pv + h2Q') -(Pv - h2Q2)El 
1 

= J7J (1 + kQ2')-1l(1 - kQl') (1 + kQi')-(1 - kvQ2')bEl 
1 

m m 
= HJ TT1 j T,2bEz + RI'bEr. 

1 1 
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